Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Total Environ ; 932: 173135, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734088

ABSTRACT

The transboundary mercury (Hg) pollution has caused adverse effects on fragile ecosystems of the Tibetan Plateau (TP). Yet, knowledge of transport paths and source regions of atmospheric Hg on the inland TP remains poor. Continuous measurements of atmospheric total gaseous mercury (TGM) were conducted in the central TP (Tanggula station, 5100 m a.s.l., June-October). Atmospheric TGM level at Tanggula station (1.90 ± 0.30 ng m-3) was higher than the background level in the Northern Hemisphere. The identified high-potential source regions of atmospheric TGM were primarily located in the northern South Asia region. TGM concentrations were lower during the Indian summer monsoon (ISM)-dominant period (1.81 ± 0.25 ng m-3) than those of the westerly-receding period (2.18 ± 0.40 ng m-3) and westerly-intensifying period (1.91 ± 0.26 ng m-3), contrary to the seasonal pattern in southern TP. The distinct TGM minima during the ISM-dominant period indicated lesser importance of ISM-transported Hg to Tanggula station located in the northern boundary of ISM intrusion, compared to stations in proximity to South and Southeast Asia source regions. Instead, from the ISM-dominant period to the westerly-intensifying period, TGM concentrations showed an increasing trend as westerlies intensified, indicating the key role of westerlies in transboundary transport of atmospheric Hg to the inland TP.

2.
Sci Total Environ ; 932: 172829, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692332

ABSTRACT

Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.

3.
J Cancer ; 15(8): 2424-2430, 2024.
Article in English | MEDLINE | ID: mdl-38495482

ABSTRACT

Cofilin (CFL1) is one critical member of the actin deploy family (ADF). Overexpression of CFL1 is associated with aggressive features and poor prognosis in malignancies. We evaluated the expression of CFL1 in patients with chronic myeloid leukemia in the chronic phase (CML-CP), acute myelocytic leukemia (AML) and healthy controls. The role of CFL1 in imatinib therapy was also investigated using cell line. We found that the expression of CFL1 was lower in CML patients than that in healthy controls, and was significantly upregulated after imatinib therapy (p<0.05). CML patients with lower CFL1 achieved higher Major molecular response (MMR) rate after 6 months of imatinib therapy (p<0.05). Cofilin, P-cofilin and F-actin, especially branched F-actin were all upregulated after imatinib therapy. The lower CFL1 expression before treatment may predicts a better response to imatinib. Imatinib affects F-actin remodeling in CML patients by regulating CFL1 expression and activity.

4.
Exp Ther Med ; 27(1): 7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223325

ABSTRACT

Epstein-Barr virus (EBV) has been implicated in the development of a wide range of lymphoproliferative disorders. In this process, the role of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) has remained to be clarified. A meta-analysis of 20 studies was performed and risk ratios (RRs) with 95% confidence intervals (CIs) were used to evaluate the association between PD-L1/PD-1 expression and the status of EBV infection. The results showed that the expression level of PD-L1 in tumor cells was significantly higher in EBV+ cases with a pooled RR of 2.26 (95% CI, 1.63-3.14; P<0.01), particularly in subtypes of diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin lymphoma. Similarly, EBV infection increased the expression of PD-L1 in immune cells with a pooled RR of 2.20 (95% CI, 1.55-3.12; P<0.01). In subtypes of DLBCL and post-transplant lymphoproliferative disorder, the expression of PD-L1 in immune cells is increased in EBV+ cases. Regarding the expression level of PD-1 in tumor-infiltrating lymphocytes (TILs), no significance was found between EBV infection and PD-1 expression, with a pooled RR of 1.10 (95% CI, 0.81-1.48; P>0.05). The present meta-analysis demonstrated that in EBV-associated lymphoproliferative disorders, EBV infection was associated with the expression level of PD-L1 in tumor cells and immune cells but was not associated with the expression of PD-1 in TILs.

5.
Environ Pollut ; 337: 122535, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37696329

ABSTRACT

Aerosol optical properties were studied over Chisinau in Moldova, one of the longest running AERONET sites in Eastern Europe. During two decades (September 1999-November 2018), the mean aerosol optical depth (AOD) and Angstrom exponent (AE) were observed as 0.21 ± 0.13 and 1.49 ± 0.29, respectively. The highest AOD (0.24 ± 0.13) and AE (1.60 ± 0.26) were observed during the summer. More than half (∼55%) of the share was occupied by clean continental aerosols with seasonal order of winter (74.8%) > autumn (62%) > spring (48.9%) > summer (44.8%) followed by mixed aerosols with a respective contribution of 30.7% (summer), 28.4% (spring), 22.5 (autumn) and 16.4% (winter). A clear dominance of volume size distribution in the fine mode indicated the stronger influence of anthropogenic activities resulting in fine aerosol load in the atmosphere. The peak in the fine mode was centered at 0.15 µm, whereas that of the coarse mode was centered either at 3.86 µm (summer and autumn) or 5.06 µm (spring and winter). 'Extreme' aerosol events were observed during 21 days with a mean AOD (AE) of 0.99 ± 0.32 (1.43 ± 0.43), whereas 'strong' events were observed during 123 days with a mean AOD (AE) of 0.57 ± 0.07 (1.44 ± 0.40), mainly influenced by anthropogenic aerosols (during 19 and 101 days of each event type) from urban/industrial and biomass burning indicated by high AE and fine mode fraction. During the whole period (excluding events days), the fine and coarse mode peaks were observed at the radius of 0.15 and 5.06 µm, which in the case of extreme (strong) events were at 0.19 (0.15) and 3.86 (2.24) µm respectively. The fine mode volume concentration was 4.78 and 3.32 times higher, whereas the coarse mode volume concentration was higher by a factor of 1.98 and 2.27 during extreme and strong events compared to the whole period.


Subject(s)
Air Pollutants , Remote Sensing Technology , Moldova , Environmental Monitoring/methods , Europe, Eastern , Aerosols/analysis , Air Pollutants/analysis
6.
Soft comput ; : 1-19, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37362302

ABSTRACT

The rapid development of information technology has made a wide range of cutting-edge technologies accessible, supporting the flourishing of human existence. Modern technology has made it possible for new computer-based technological strategies like gamification. The pedagogical framework is based on the "gamification" game format, which is one of the most recent teaching strategies and has an engaging component for students. Gamification, flipped learning, and problem-based learning are three examples of the technical aspect of escape rooms. In the academic setting, gamification aims to boost student engagement and motivation in order to produce a better user experience. Gamification has been found to increase levels of participation, foster it, and improve activity outcomes. Gamification is recommended in educational settings to improve students' achievement, focus, and contentment in light of these benefits. In order to establish an effective learning environment where students may effectively improve their learning capacities and boost their performance, it can be difficult to select a higher performing technique among the available techniques due to the ongoing use of gamification techniques. The fuzzy analytical hierarchy process (FAHP) and evaluation based on distance from average solution (EDAS) are applied in order to determine the criterion weighting and assess the techniques in order to make a good decision. The presented paper analyzed numerous game-based learning techniques along with their applications in the educational field. Additionally, ten criteria and eight gamification methodologies are used to assess and pick the prior pertinent works. By utilizing the suggested approaches, the decision problem has been resolved. The FAHP approach is used in the suggested analysis to evaluate the criteria and determine their weights. Then, using the EDAS method, places are assigned to the chosen procedures based on their evaluation score and criterion weighting. The results of the appraisal show that the gamification technique with the highest production takes first place and is regarded as the best-performing and most successful technique. On the other hand, it is clear that the technique with the lowest production takes the bottom spot and is referred to as the least expensive and lowest performing technique. In order to increase students' motivation, which could have a substantial impact on learning, it has been discovered that gamification is a feasible strategy.

7.
Br J Haematol ; 202(3): 566-577, 2023 08.
Article in English | MEDLINE | ID: mdl-37231991

ABSTRACT

Glutamine metabolic reprogramming in acute myeloid leukaemia (AML) cells contributes to the decreased sensitivity to antileukemic drugs. Leukaemic cells, but not their myeloid counterparts, largely depend on glutamine. Glutamate dehydrogenase 1 (GDH1) is a regulation enzyme in glutaminolysis. However, its role in AML remains unknown. Here, we reported that GDH1 was highly expressed in AML: high GDH1 was one of the independent negative prognostic factors in AML cohort. The dependence of leukaemic cells on GDH1 was proved both in vitro and in vivo. High GDH1 promoted cell proliferation and reduced survival time of leukaemic mice. Targeting GDH1 eliminated the blast cells and delayed AML progression. Mechanistically, GDH1 knockdown inhibited glutamine uptake by downregulating SLC1A5. Moreover, GDH1 invalidation also inhibited SLC3A2 and abrogated the cystine-glutamate antiporter system Xc- . The reduced cystine and glutamine disrupted the synthesis of glutathione (GSH) and led to the dysfunction of glutathione peroxidase-4 (GPX4), which maintains the lipid peroxidation homeostasis by using GSH as a co-factor. Collectively, triggering ferroptosis in AML cells in a GSH depletion manner, GDH1 inhibition was synthetically lethal with the chemotherapy drug cytarabine. Ferroptosis induced by inhibiting GDH1 provides an actionable therapeutic opportunity and a unique target for synthetic lethality to facilitate the elimination of malignant AML cells.


Subject(s)
Glutamate Dehydrogenase , Leukemia, Myeloid, Acute , Mice , Animals , Glutamine/metabolism , Cystine , Cytarabine , Glutathione/metabolism
8.
Environ Sci Technol ; 57(17): 6910-6921, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37074051

ABSTRACT

Thaw slumps can lead to considerable carbon loss in permafrost regions, while the loss of components from two major origins, i.e., microbial and plant-derived carbon, during this process remains poorly understood. Here, we provide direct evidence that microbial necromass carbon is a major component of lost carbon in a retrogressive permafrost thaw slump by analyzing soil organic carbon (SOC), biomarkers (amino sugars and lignin phenols), and soil environmental variables in a typical permafrost thaw slump in the Tibetan Plateau. The retrogressive thaw slump led to a ∼61% decrease in SOC and a ∼25% SOC stock loss. As evident in the levels of amino sugars (average of 55.92 ± 18.79 mg g-1 of organic carbon, OC) and lignin phenols (average of 15.00 ± 8.05 mg g-1 OC), microbial-derived carbon (microbial necromass carbon) was the major component of the SOC loss, accounting for ∼54% of the SOC loss in the permafrost thaw slump. The variation of amino sugars was mainly related to the changes in soil moisture, pH, and plant input, while changes in lignin phenols were mainly related to the changes in soil moisture and soil bulk density.


Subject(s)
Permafrost , Soil , Carbon , Tibet , Lignin , Phenols , Amino Sugars
9.
Environ Sci Technol ; 57(12): 4775-4783, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36926863

ABSTRACT

As the Third Pole of the world, the Tibetan Plateau (TP) is sensitive to anthropogenic influences. Biomass combustion is one of the most important anthropogenic sources of mercury (Hg) emissions in the TP. However, due to the lack of knowledge about Hg emission characteristics and activity levels in the plateau, atmospheric Hg emissions from biomass combustion in the TP are under large uncertainties. Here, based on pilot-scale experiments, we found that particle-bound mercury (PBM; mean of 83.1-87.7 ng/m3) occupied 17.93-49.31% of the total emitted Hg and the PBM δ202Hg values (average -1.65‰ to -0.77‰) were significantly higher than those of the corresponding feeding biomass. The Δ200Hg values of total gaseous mercury and PBM were more negative (-0.08‰ to -0.05‰) than other anthropogenic emissions, providing unique isotopic fingerprints for this sector. Together with the investigated local activity levels, Hg emissions from biomass combustion reached 402 ± 74 kg/a, which were dozens of times higher than previous estimates. The emissions were characterized by conspicuous spatial heterogeneity, concentrated in the northern and central TP. Specialized Hg emissions and the Hg isotope fingerprint of local biomass combustion can aid in evaluating the influence of this sector on the fragile ecosystems of the TP.


Subject(s)
Mercury , Mercury/analysis , Mercury Isotopes/analysis , Tibet , Ecosystem , Biomass , Environmental Monitoring
10.
Environ Pollut ; 316(Pt 1): 120501, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283470

ABSTRACT

Ground-based observational characterization of atmosphere aerosols over Central Asia is very limited. This study investigated the columnar aerosol characteristics over Issyk-Kul, Kyrgyzstan, a background site in Central Asia using the long-term (∼14 years: August 2007-November 2021) data acquired with the Cimel sunphotometer. The mean aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period were 0.14 ± 0.10 and 1.19 ± 0.41, respectively. Both AOD and AE varied across seasons, with highest AOD in spring (0.17 ± 0.17). Regarding the aerosol types, clean continental aerosols were dominant type (65%), followed by mixed aerosols (∼19%), clean marine aerosols (∼14%), dust (0.8%), and urban/industrial and biomass burning aerosol (0.7%). The aerosol volume size distribution was bimodal indicating the influence of both anthropogenic and natural aerosols with clear dominance of coarse mode during the spring season. Mainly dust and mixed aerosols were present during high aerosol episodes while the coarse mode aerosol volume concentration was 7.5 (strong episodes) and ∼19 (extreme episodes) times higher than the whole period average. Aerosol over this background sites were from local and regional sources with some contribution of long-range transport.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , Aerosols/analysis , Dust/analysis , Asia
12.
J Environ Manage ; 320: 115736, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35932736

ABSTRACT

Indoor air pollution (IAP) is one of the leading risk factors for various adverse health outcomes including premature deaths globally. Even though research related to IAP has been carried out, bibliometric studies with particular emphasis on this topic have been lacking. Here, we investigated IAP research from 1990 to 2019 retrieved from the Web of Science database through a comprehensive and systematic scientometric analysis using the CiteSpace 5.7.R2, a powerful tool for visualizing structural, temporal patterns and trends of a scientific field. There was an exponential increase in publications, however, with a stark difference between developed and developing countries. The journals publishing IAP related research had multiple disciplines; 'Indoor Air' journal that focuses solely on IAP issues ranked fifth among top-cited journals. The terms like 'global burden', 'comparative risk assessment,' 'household air pollution (HAP)', 'ventilation', 'respiratory health', 'emission factor', 'impact,' 'energy', 'household', 'India' were the current topical subject where author Kirk R. Smith was identified with a significant contribution. Research related to rural, fossil-fuel toxicity, IAP, and exposure-assessment had the highest citation burst signifying the particular attention of scientific communities to these subjects. Overall, this study examined the evolution of IAP research, identified the gaps and provided future research directions.


Subject(s)
Air Pollution, Indoor , Air Pollution , Air Pollution, Indoor/analysis , Cooking , Family Characteristics , Humans , Ventilation
13.
Front Oncol ; 12: 905490, 2022.
Article in English | MEDLINE | ID: mdl-35832562

ABSTRACT

The outcomes of myelodysplastic syndrome (MDS) patients with SF3B1 mutation, despite identified as a favorable prognostic biomarker, are variable. To comprehend the heterogeneity in clinical characteristics and outcomes, we reviewed 140 MDS patients with SF3B1 mutation in Zhejiang province of China. Seventy-three (52.1%) patients diagnosed as MDS with ring sideroblasts (MDS-RS) following the 2016 World Health Organization (WHO) classification and 118 (84.3%) patients belonged to lower risk following the revised International Prognostic Scoring System (IPSS-R). Although clonal hematopoiesis-associated mutations containing TET2, ASXL1 and DNMT3A were the most frequent co-mutant genes in these patients, RUNX1, EZH2, NF1 and KRAS/NRAS mutations had significant effects on overall survival (OS). Based on that we developed a risk scoring model as IPSS-R×0.4+RUNX1×1.1+EZH2×0.6+RAS×0.9+NF1×1.6. Patients were categorized into two subgroups: low-risk (L-R, score <= 1.4) group and high risk (H-R, score > 1.4) group. The 3-year OS for the L-R and H-R groups was 91.88% (95% CI, 83.27%-100%) and 38.14% (95% CI, 24.08%-60.40%), respectively (P<0.001). This proposed model distinctly outperformed the widely used IPSS-R. In summary, we constructed and validated a personalized prediction model of MDS patients with SF3B1 mutation that can better predict the survival of these patients.

14.
Environ Sci Pollut Res Int ; 29(42): 63142-63154, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35449335

ABSTRACT

The visible light responsive graphitic nitride (g-C3N4) mediated photocatalysis has drawn extensive attention in water treatment field. Carbon doping could improve the photocatalytic activity of g-C3N4 in promoting charge separation efficiency, visible-light utilization, etc. In this paper, the g-C3N4 (as MC) was modified by barbituric acid (as MCB0.07) and further treated by reduced graphene oxide (rGO) (as n%GCN) and then applied to inactivate ofloxacin-resistant bacteria (OFLA) under light irradiation at UVA-visible wavelength. The results showed that the n%GCN presented strong photocatalytic activity when the GO mass ratio was 7.5% (as 7.5%GCN). The inactivation efficiencies of OFLA by MC, MCB0.07, and 7.5%GCN were 5.77 log, 8.48 log, and 8.25 log, respectively, under UVA-visible wavelength (λ > 305 nm), compared to 4.83 log, 5.56 log, and 6.08 log, respectively, within 16 h under visible wavelength (λ > 400 nm). The rGO-doping obviously improved the inactivation efficiency of MCB0.07 on OFLA under visible wavelength. Furthermore, the photoreactivation and dark repair phenomena of OFLA were examined after MC, MCB0.07, and 7.5%GCN treatment, respectively, and it was found that all approaches led to permanent damage to OFLA of which the regrowth was not observed after 24-48 h. Based on the quenching test, reactive oxygen species of O2-• and hole (h+) exhibited dominant roles in the photocatalytic inactivation of OFLA, which may result in oxidative stress and damage to the cell membrane. This study could shed light on the inactivation of OFLA under visible light radiation by rGO modified g-C3N4.


Subject(s)
Graphite , Ofloxacin , Bacteria , Catalysis , Light , Reactive Oxygen Species
15.
Sci Total Environ ; 804: 150124, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517315

ABSTRACT

Information about the long-term trends of wet mercury (Hg) deposition is important for assessing the impact of atmospheric pollution on environmental health. As the most populated and capital city of Tibet, Lhasa is isolated far away from the heavily-polluted urban clusters in China. In this study, a 10-year observation was conducted in Lhasa to establish the long-term trend of wet Hg deposition and investigate the possible causes of this variation trend. Our study showed no significant increase in wet Hg deposition while Lhasa has achieved rapid population and economic growth during the study period. The contrasting changes in long-term wet Hg deposition and socioeconomic development (e.g., GDP growth) could be greatly attributed to the efforts in preventing and controlling air pollution at regional and local levels. This trend in Lhasa differs greatly from those observed by a rapid increase of Hg trend in the remote areas of the Tibetan Plateau. Our findings indicate that the remote cryospheric areas over the Tibetan Plateau are prone to be affected by transboundary Hg pollution, and more attention should be paid to its environmental and health effects for future study.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Environmental Monitoring , Mercury/analysis , Socioeconomic Factors , Tibet
17.
Arch Environ Contam Toxicol ; 80(3): 558-566, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33772632

ABSTRACT

Black carbon (BC) aerosol impacts the air quality, public health, agricultural productivity, weather, monsoon, cryosphere, and climate system from the local to the global scale. However, its distribution over vast Central Asia is poorly known, because it is one of the poorly sampled regions of the world. BC in the soil can be resuspended into the atmosphere and transported to downwind regions with sensitive ecosystems and vulnerable populations, such as from Central Asian countries to the cryospheric regions in the Tianshan Mountain and the Tibetan Plateau, which could accelerate the melting of the snowfields and glaciers. We report the distribution of BC and total organic carbon (TOC) in surface soil with samples collected at multiple sites, for the first time, over three countries in Central Asia (Uzbekistan, Tajikistan, and Kyrgyzstan). The mean BC (TOC) concentrations over three countries were 0.06 ± 0.06 (11.86 ± 4.84) mg g-1, 0.15 ± 0.21 (20.35 ± 10.96) mg g-1, and 0.32 ± 0.29 (26.45 ± 20.38) mg g-1, respectively. They were found to be originated from the same or similar sources, at least over Tajikistan and Kyrgyzstan, as indicated by their high and significant correlation (R2 > 0.6, p < 0.001). The char/soot ratio indicated the diesel and gasoline combustion as dominant BC sources over this region. To gain further insights into the soil BC and its implications to air quality, climate, and cryosphere, future studies should include a wider area over Central Asia with different land-use types and other soil parameters combined with atmospheric simulations for this important yet relatively less studied region of the world.


Subject(s)
Air Pollutants , Soot , Air Pollutants/analysis , Asia , Carbon/analysis , Ecosystem , Environmental Monitoring , Soil , Soot/analysis , Tajikistan
18.
Environ Pollut ; 268(Pt A): 115907, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120351

ABSTRACT

To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013-June 2019. The annual mean PM2.5, PM10, SO2, NO2, CO, and O3 concentrations ranged from 51.44 to 59.54 µg m-3, 128.43-155.28 µg m-3, 10.99-17.99 µg m-3, 26.27-31.71 µg m-3, 1.04-1.32 mg m-3, and 55.27-65.26 µg m-3, respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM10-2.5) was predominant, particularly during the spring and summer seasons. The highest PM2.5/PM10 ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM2.5 (PM10) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. ∼5-6 (∼7-8). Very high ambient PM concentrations were recorded during March 19-22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM2.5 (PM10) concentrations ∼8-54 (∼26-115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m-3. Such high PM2.5 and PM10 concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring , Particulate Matter/analysis , Seasons
19.
Environ Pollut ; 265(Pt B): 114872, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32497948

ABSTRACT

This paper presents the results of the study on columnar aerosol optical and physical properties and radiative effects directly observed over Dushanbe, the capital city of Tajikistan, a NASA AERONET site (equipped with a CIMEL sunphotometer) in Central Asia. The average aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period from July 2010 to April 2018 were found to be 0.28 ± 0.20 and 0.82 ± 0.40, respectively. The highest seasonal AOD (0.32 ± 0.24), accompanied by the lowest average AE (0.61 ± 0.25) and fine-mode fraction in AOD (0.39), was observed during summer due to the influence of coarse particles like dust from arid regions. Fine particles were found in significant amounts during winter. The 'mixed aerosol' was identified as the dominant aerosol type with presence of 'dust aerosol' during summer and autumn seasons. Aerosol properties like volume size distribution, single scattering albedo, asymmetry parameter and refractive index suggested the influence of coarse particles (during summer and autumn). Most of the air masses reaching this site transported local and regional emissions, including from beyond Central Asia, explaining the presence of various aerosol types in Dushanbe's atmosphere. The seasonal aerosol radiative forcing efficiency (ARFE) in the atmosphere was found high (>100 Wm-2) and consistent throughout the year. Consequently, this resulted in similar seasonally coherent high atmospheric solar heating rate (HR) of 1.5 K day-1 during summer-autumn-winter, and ca. 0.9 K day-1 during spring season. High ARFE and HR values indicate that atmospheric aerosols could exert significant implications to regional air quality, climate and cryosphere over the central Asian region and downwind Tianshan and Himalaya-Tibetan Plateau mountain regions with sensitive ecosystems.


Subject(s)
Air Pollutants/analysis , Aerosols/analysis , Ecosystem , Environmental Monitoring , Seasons , Tajikistan
20.
Sci Total Environ ; 720: 137494, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32325570

ABSTRACT

One year of online total gaseous mercury (TGM) measurements were carried out for the first time in Lanzhou, a city in northwest China that was once seriously polluted. Measurements were made from October 2016 to October 2017 using the Tekran 2537B instrument, and the annual mean concentration of TGM in Lanzhou was 4.48 ± 2.32 ng m-3 (mean ± standard deviation). TGM concentrations decreased during the measurement period, with autumn 2017 average concentrations 2.87 ng m-3 lower than autumn 2016 average concentrations. Similar diurnal variations of TGM were obtained in different seasons with low concentrations observed in the afternoon and high concentrations at night. The principal component analysis and conditional probability function results revealed that the sources of mercury were similar to the other atmospheric pollutants such as SO2, CO, NO2 and PM2.5, and were mainly from industrial combustion plants in urban districts. Concentration weighted trajectory analysis using backward trajectories demonstrated that higher mercury concentrations were related to air masses from adjacent regions, indicating the importance of influences from local-to-regional scale sources. A synthesis of multi-decadal atmospheric mercury measurements in Lanzhou and other Chinese megacities revealed that atmospheric mercury concentrations were either generally stable or experienced a slight decrease, during a time when China implemented control measures on atmospheric pollution. Long-term atmospheric mercury observations in urban and background sites in China are warranted to assess mercury pollution and the effectiveness of China's mercury control policies.

SELECTION OF CITATIONS
SEARCH DETAIL
...